
-•^ •• '•«I. -    •''-". •   I If J   1   1II •• 1   ». •. •,   ••   n. , 

REPORT SD-TR«- 23 -7£ 

I'J 

An Investigation of Methods for Computing 
Long Path Atmospheric Transmittance 

B. R. JOHNSON 
Chemistry and Physics Laboratory 

Laboratory Operations 
The Aerospace Corporation 

El Segundo, Calif. 90245 

/9P2. 

APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED 

s 

Sponsored by 

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DOD) 
DARPA Order No. 2843 

Monitored by SD Under Contract No. F04701-81-C-O082 

SPACE DIVISION 
AIR FORCE SYSTEMS COMMAND 

Los Angeles Air Force Station 
P.O. Box 92960, Worldway Postal Center 

Los Angeles, Calif. 90009 

dß* 
v.« 

1 h 
1983 

THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT 
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED 
AS NECESSARILY REPRESENTING THE OFFICIAL POLICIES, EITHER 
EXPRESSED OR IMPLIED, OF THE DEFENSE ADVANCED RESEARCH 
PROJECTS AGENCY OR THE U.S. GOVERNMENT. 

83   11   22    097 

.... 



^^^•*^Fi^^^ ^—•, •. • »'.,•».' «_•<. "••». V'T -. 

This report was submitted by The Aerospace Corporation, El Segundo, CA 

90245, under Contract No. F04701-81-C-0082 with the Space Division, Deputy for 

Technology, P.O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009.  It 

was reviewed and approved for The Aerospace Corporation by S. Feuerstein, 

Director, Chemistry and Physics Laboratory.  The research was supported by the 

Defense Advanced Research Projects Agency of the Department of Defense. 

This report has been reviewed by the Public Affairs Office (PAS) and is 

releasable to the National Technical Information Service (NTIS).  At NTIS, It 

will be available to the general public, including foreign nationftlj> 

This technical report has been reviewed and Is approved for publication. 

Publication of this report does not constitute Air Force approval of the 

report's findings or conclusions.  It Is published only for the exchange and 

stimulation of ideas. 

Carey L./b'Bryan, Lt//Col, USAF 
STEVEN M. KATAPSKI, 2LT, USAF 

FOR THE COMMANDER 

U_; ,       J_M . 6vw«v ^ 
>rravan W.   Lee,   Jr.,   Col,   USAF 

Deputy  for  Technology 

-«-•-*-   ->- •-   •-»-:•-.     A.' -  -.  •-'. -.-   .   .    ....   ••....    ._•,_..   .--•.-.   .«.-.-.»>.•.-•-•• 



r- • V J •,•.••.•».' u ' • -» -»  —? - w • •*»-•«-.      <   • * • 

,< 

:-• 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PACE fWhan Data Entered) 

REPORT DOCUMENTATION PAGE 
1.   REPORT NUMBER 

SD-TR-%:?- 7 k 

2. GOVT ACCESSION NO 

4P. A/ ¥-/ r' 
4.    TITLE (and Submit) 

AN INVESTIGATION OF METHODS FOR COMPUTING 
LONG PATH ATMOSPHERIC TRANSMITTANCE 

7.   AUTHOR)» 

Bernard R.   Johnson 

9.   PERFORMING ORGANIZATION NAME AND ADDRESS 

The Aerospace Corporation 
El Segundo, California 90245 

II.   CONTROLLING OFFICE NAME AND ADDRESS 

Defense Advanced Research Projects Agency 
1400 Wilson Blvd 
Arlington, VA 22209 

14.   MONITORING AGENCY NAME a  AODRESSf// dlltarant from Controlling Olllca) 

Space Division 
Air -Foreo  Cyatems  Command   i^'-> rKi^faS'* PU~£  F&ilce 
Los Angeles,   California    90009 ^^yrfiTic?ij1 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.    RECIPIENT'S CATALOG NUMBER 

1 
S. TYPE OF REPORT a  PERIOD COVERED 

6. PERFORMING ORG. REPORT NUMBER 

TR-0082(2753-08)-! 
B. CONTRACT OR GRANT NUMBERfa; 

F04701-81-C-0082 

10. PROGRAM ELEMENT. PROJECT, TASK 
AREA « WORK UNIT NUMBERS 

12. REPORT DAT )RT DATE 

13. NUMBER OF PAGES 

IS.   SECURITY CLASS, (ol thla raport) 

Unclassified 

15».    DECLASSIFI CATION 'DOWN GRADING 
SCHEDULE 

16.   DISTRIBUTION STATEMENT (of Oil* Raport) 

Approved for public release; distribution unlimited. 

17.   DISTRIBUTION STATEMENT (ot tha abatract antarad In Block 20, It dlltarant from Raport) 

18.   SUPPLEMENTARY NOTES 

'9     KEY WORDS (Contlnua on ravaraa alda II naeaaaary and Identify by block nimbar) 

Atmospheric Transmittance 
Attenuation 
Band Model 
Infrared 

Long Path Transmittance 

20     ABSTRACT (Continue on ravaraa alda It naeaaaary and identity by block number) 

The reliability of the statistical band model for long path length, low trans- 
mittance conditions is investigated by comparing the band model with precise 
line by line calculations.  Two test systems are utilized; a system of H„0 
absorbers and a system of computer generated line parameters.  It is found that 
the statistical band model is fairly reliable for calculating band transmittanc« 
in the range T > 0.1, but for transmittance less than this, it is not reliable 
and can be in error by several orders of magnitude.  An explanation for this 
behavior is offered. 

0D    f0R"    1473 
If« ClIMILEl UNCLASSIFIED 

SECURITY CLASSIFICATION Or" THIS PAGE (Whmn Dmtm Bnffd) 

• -"- * • •* • - 4»"*- » -  t- *- »•'»- »•   :..^.i.,T- *"- * m » m hmßMtJmt — *••-* »••--•.- 



r  ——«-71 ".-.-.  -.---. 

M 

3 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAOCQWll D,lm Bnfnd) 

i 

19.    KEY WORDS fCont/nu.dj 

20.   ABSTRACT (ConUnutd) 

In the second part of this investigation, a new nonstatistical method 
based on a simple approximation of the k-distribution function is developed. 
It is compared with precise line by line calculations and is found to be very 
reliable for all transmittance conditions. 

NTTS      »RAtl r Zi 

* 

SffSfii /^& 
1 • •.»•..'.• i 

UNCLASSIFIED 
SICuAITV CLASSIFICATION OF TH»1 *AOIfWH»n D»«» Enfnd) 

•     •     *     *      • • -     '     * •*••--•     1 ' Ti 



•»^^—>—•--—>—"-y—"7T—r—•—••* ."» -^ --->-.• • • 

CONTENTS 

I. INTRODUCTION  5 

II. COMPARISON OF STATISTICAL BAND MODEL 
AND LINE BY LINE TRANSMITTANCE  7 

A. H2O Line Parameters  8 

B. H20 Line Parameter Distribution  13 

C. Computer Generated Line Parameters  15 

III. NEW TRANSMITTANCE APPROXIMATIONS  27 

A. Two-Parameter Approximation  2R 

B. Three-Parameter Approximation  35 

C. k-Distribution Function  41 

D. Monte Carlo Method  50 

IV. SUMMARY AND DISCUSSION  55 

REFERENCES  57 

•- • - •- - • . - - - •-..--•- .-..»-. ^. - _  - .. -. .   - — .-^. 



mtm^^^^^^^^^^f^^^^ E ^ -•* J• »"• .#* J - » - k - - - • - • - •*—* •— ••- • ^ ».- • 1 

FIGURES 

1. Comparison of Line by Line (T ) and Band 
Model (T0) Transmittances at 30 km    10 

o 

2. Comparison of Line by Line (T ) and Band Model 
(T ) Transmittances for 3040 cm-1 Band    11 

3. Comparison of Line by Line (T ) and Band Model 
(TD) Transmittances for 3060 cm

-1 Band    12 

4. Stick Diagram of 1^0 Line Spectrum in the 
3040 and 3060 cm-1 Bands    14 

5. Line Strength DistriDution    16 

6. Line Spacing Distribution    17 

7. Line Width Distribution    18 

8. Spectral Absorption Coefficient k(v) in the 
3040 and 3060 cm-1 Bands    19 

9. Stick Diagram"of a Computer Generated 
Line Spectrum    22 

10. Line Strength Distribution for the 
Computer Generated Lines    22 

11. Line Spacing Distribution for the Computer 
Generated Lines    23 

12. Spectral Absorption Coefficient k(v), Obtained 
from the Computer Generated Lines    23 

13. Comparison of Line by Line (T ) and Band Model 
(T ) Transmittances Obtained from Computer 
Generated Lines    24 

14. Ensemble of 20 Band Model Curves from 20 Random 
Samples of Computer Generated Line Parameters    25 

15. Monotonie Absorption Function k(p)    29 

16. Comparison of Line by_Line (T ) and 
Two-Parameter Model (T_) Transmittances 
for 3040 cm-1 Band....7    32 



" •" ' ^^r=^^^^^^^^ 

1 

: 

• 

FIGURES (Continued) 

17.  Comparison of Line by Line (T ) and Two-Parameter 
Model (T ) Transmittances for 3060 cm-1 Band ....  33 

B 18. Monotonie Absorption Function k(p)   36 

19.  Comparison of Line by_Line (T ) and Alternate 
Two-Parameter Model (T„) Transmittances for 
the 3040 cm"1 Band 7   37 

| 20.  Comparison of Line by_Line (T ) and Alternate 
Two-Parameter Model (T~) Transmittances for the 

Q 3060 cm"1 Band 7    38 

21. Monotonie Absorption Function k(p)   40 

22. Comparison of Line by Line (T ) and Three-Parameter 
Model (T_) Transmittances for 3040 cm"1 Band   42 

\ 23.  Comparison of Line by Line (T ) and Three-Parameter 
Model (T.) Transmittances for 3060 cm"1 Band    43 

| 24.  k-Distributton Functions    45 

K 25.  k-Distribution Functions   46 

26. Monotonie Absorption Function   48 

i 27.  Comparison of_Line by Line (T ) and 50 Point 
Monte Carlo (T_n) Transmittances for 

>: 3040 cm"1 Band77   53 

•'.;• 28.  Comparison of_Line by Line (T ) and 50 Point 
Monte Carlo (Tsn) Transmittances for 

1 3060 cm"1 Band77   54 

- /••'-'. •   A*.'   -' i*'" 
•* • •  •   ' * - - * - • * • - ' - • 



^^—w  . - .    .    -•-•">;•' 

I.  INTRODUCTION 

(1 
•V ,\- 

A   line   by   line   calculation  is   the   most   accurate   and   general   means   for 
. «\ 

computing   the  atmospheric  transmission  of   radiant   energy.     With  the  aid   of  a 

Bj modern computer and  the  recent   convenient availability  of  tables  of  line  para- 

meters    stored    on   magnetic    tape,      such    calculations    can    now   be    routinely 

[•'/ carried  out. 

For many applications,   the  quantity  of  interest  is  the mean value  of  the 

W transmlttance  over a  band  interval Av 

• 

IE    /A,    
T

<
V

>  
dv (1) Av    * Av 

i—* 

H The  total  numerical  effort   required  to compute T using  the  line  by  line method 

is  quite   large  and  any  extensive   calculation  of  mean  transmittance  values   can 

'.-'•. be quite  time  consuming,  even on a  fast  computer. 

^m Band   model   theory,    on   the   other   hand,   provides   a   simple   parameterized 

formula   for   computing   the   mean  band   transmittance,   which   is  much  more   effi- 

cient    than   the   line   by   line    calculations.       However,    since   it   is   based   on 

certain   simplifying   assumptions   it   must   be   tested   for   accuracy.       Previous 
2 <^m studies     comparing   the   statistical   band  model   with   line   by   line   calculations 

have   shown a   reasonable   agreement   between  the   two  methods.     This   comparison, 

','•' however,   was   carried   out   for   small   to  moderate   optical   path  distances   where 

!«C." the    transmittances   were   in   the    range T * > 0.1.      Comparisons   have   not   been 

made   in   the   very   long   path   length   regime  where T < 0.1.     In  this   report, we 

present     the     results    of    such    a     comparison.        The    details    are    given in 

'•'.                           Section II. 

We   will   conclude   from   this   comparison   that   the   band  model   does   not, in 

• 0                          general,   give   very   good   results   in   the   regime   where T • < 0.1.     In  fact, as 

1L.   S.  Rothmon,  Appl.  Opt.   20,  791   (1981). 
2A.  Goldman and T.  Kyle,  Appl.  Opt. _7_.   H67   (1968), 

1 
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will be seen, the traremittance can be in error by several orders of magnitude 

and is shown to have the wrong asymptotic behavior as the optical path length 

approaches  infinity. 

In Section III, we derive new parameterized formulas for computing the 

mean band transmittance T(x). These formulas are accurate for all values of 

optical distance x, including the limit as x approaches infinity. The results 

of comparisons with both the precise line by line calculations and statistical 

band model  calculations  will also be  presented. 

Section IV is a  summary and  discussion. 

-'-"-• •  -  • • ^-- •      ...-•   •«-. , .      ,        • «_• *  •   - «^ . -      • -      - . . ^_i . . . . -         _«._      .    ^      .      .      -      .      _»__._»_. I 
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II.  COMPARISON OF STATISTICAL BAND MODEL AND LINE BY LINE TRANSMITTANCE 

1 
The line parameter data for these calculations were obtained from the Air 

Force Geophysics Laboratory (AFGL) line atlas.   This compilation provides 

g data for seven gas species: H20, C02, O3, N20, CH^, CO, and 02.  The data 

*\ given for each line include the line position X (cm-*), the line strength S 

(cm- /molecule - cm" at 296°K), the line half-width y     (cm~ for air broaden- 

ing at 296°K and 1 atm pressure), and the energy of the lower level of the 

•transition E^ (cm" ).  The subscript i labels the line, while the superscript 
0 0 0 on the strength S and the half-width y    indicate that these quantities are 

v taken directly from the atlas and are, therefore, appropriate for a pressure 

of 1 atm and temperature of 296°K. 

I The line strength SJ and the width parameter y    at any other temperature 

and pressure are computed from S and y    using the same formulas employed by 

C. M. Randall in his general line by line computer program, INHOM. A discus- 

"- sion of these formulas is given in Ref. 3. 

^ All calculations have been carried out assuming a Lorentz pressure broad- 

ened line shape function.  The spectral absorption coefficient is given by 

•:• 

J 
~- 
'.- 

.„-• 

1       ni si Yi 
k(v)-i I  1 %  7 (2) 

* i (v - v±)
2 - y±

2 

The quantity n^ is the density of the gas for which S^ and y. characterize a 

line.  The units of n^ used in this study are molecules/(cm^ - km), i.e., the 

number of molecules in a column 1 km long and 1 cm^ in cross sectional area. 

By including the density factor n.^ in the definition, k(v) has the convenient 

dimension 1/km.  The transmittance at wave number v is given by 

T(v, x) - exp l-k(v) x] (3) 

3 
S. J. Young, Band Model Parameters for the 2.7-um Bands of HyO and C02 in the 
100 to 3000^ Temperature Range, TR-0076(6970)-4, The Aerospace Corp. 
T31 July 1975). 

A .v.v.,v.•«.•. -«.-.„-.,-'»,•..• .. ...-., .,-. 1 , „ . . A - •-• -• . - - •_ . ^_j 1 - -• •'•*••   . . . . - • - .  
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where x is the distance measured in kilometers.  The mean band transmittance 

is then computed by averaging T(v,x) over the band interval Av [see Eq. (1)) 

T(x) 
_1_ 
Av 

J      exp l-k(v) x]dv (4) 
Av 

In the statistical band model with exponential-tailed inverse line 
4 3 4 strength distribution,  the mean band transmittance is given by ' 

k 6, 
T(x) = exp [- |i (1 +—~ x -1)] (5) 

where k, <', , and y are the three band model parameters. The band model para- 

meters can be expressed as certain averages of the line parameters over the 

spectral interval Av«  The parameter k is iefined by the expression 

Av i,1  i i 
(6) 

where L is the number of lines in the interval Av«  The parameter y  is the 

average line width 

•• L i-1    1 
(7) 

and 6 is a measure of the effective average distance between lines in Av 

i'tz^l iW (8) 

A.   H20 LINE PARAMETERS 

The model system used for the calculations in this report has the follow- 

ing specifications: pressure, 1013 mbar; temperature, 300°K; concentration of 

H2O, 0.026; concentration of O2, 0.21. The wave number range in which the 

calculations are carried out is 2800 to 3400 cm" .  (Only the H20 molecules 

--. 

'W. Malkmus, J. Opt. Soc. Am. 57, 323 (1967), 

m%* •*.».'. - ».. m...:...m..:.M -  ......   ~ „..;. :.« • - :,.,. •'• »  . » • I -- • — - • hi_^_br.  . 
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have absorption lines in this range; the (^ concentration is specified because 

of its influence on the width parameters of the H2O lines.) The density n of 

H2O molecules  in this model  system is 

n - 6.36 x  1022  mo^ecules (9) 
cm - km 

The spectral band interval is chosen to be Av » 20 cm . A band will be 

identified by its mean wave number. Thus, the 3040 cm band is the band that 

extends  from 3030  to 3050  cm-1. 

error is   the   logarithm  of   the   ratio  of   the  band  model  transmittance T    to  the 
_ * B 

Figure    1    shows    our   initial    comparison   of   line   by   line   and   band   model 

transmittances   in   the   interval   from   2800   to   3400   cm    .       The   optical   path 

length   in   this   calculation   is   30   km.     A   convenient   measure   of   the   band   model 

error is   the   logarithm  of   the   rat 

mean line  by  line  transmittance T 
L 

E - Log1()(TB/TL) (10) 

This quantity is plotted in Fig. lb. For transmittances generally in the 

range T > 0.1, we see that the band model does quite well. However, when 

T < 0.1 the band model can be in error by several orders of magnitude. In 

particular, the errors in the bands centered at 3040 and 3060 cm- are large 

and opposite in direction. These two are taken as representative of low 

transmittance bands and will be examined in detail in the remainder of this 

report. 

The  band  model  and   line  by  line   transmittances   in  the  3040 and  3060  cm 

bands   are   plotted   as   a    function   of   distance   in   Figs.    2a   and   3a   with   the 

corresponding error  curves  plotted  in Figs.   2b and  3b.     In the  3040  cm"    band, 

the   error   is    less    than   unity,    decreases    to   a   minimum,   and   then   begins   to 

increase,   whereas   for   the   3060   cm       band   the   error   increases   monoton!cally. 

In  this   report   the unit  of error is   called an  "order of magnitude."    Thus, 
E • 2  is a  two order-of-magnltude  error. 

-*-"  I    ••«•'"«     '•>!». ,f,.i-     -. •-.-.-•-•»   .1 -     •     -    -     .   -    - »   •     . .'•   - » .       -.       -.   *   ..  -»'•*•"-' . .  ... ...     ^ ^        ,_ _..... > 
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These two examples are representative of the two basic shapes for error 

curves. The reasons for these two basic shapes will be discussed in more 

detail in Section II1-C. 

B.       H20  LINE  PARAMETER  DISTRIBUTIONS 

The first question that must be answered concerns the line parameter 

distributions. Are the line parameters actually distributed in reasonable 

agreement with the assumptions of statistical band theory? In order to answer 

this,  we have plotted  the distributions. 

Figure A is a schematic plot of the lines in the two bands. The height 

of each line is the dimensionless strength parameter a. • S./S where S is 

the average strength for the band. In statistical band theory the lines are 

assumed to be randomly positioned in the band, and the line strengths are 

assumed to be distributed with a probability density given by the exponential- 

tailed inverse  function.       This  distribution function is 

p(s)-mdni [«p (?)-«* C")3 <»> 
m m 

Where R and  S    are parameters,  it  is   convenient  to work with  the  dimensionless in 

strength parameter a • S/S (where S is the average of the distribution). The 

probability distribution for o  is  easily shown to be 

G(o) -  S P(S  o) (12) 

which evaluates  to 

G(o)  - o g~flg   [exp  (-Ao)  - exp  (-RAo)l (13) 

where 

A - S/S    - P
R " 5 (14) m       R in R 

13 
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This function is represented by the dashed curves in Fig. 5. In both 

graphs, R • 10". The actual density distributions of S/S in the bands are 

represented by the histograms in Fig. 5. The function and histograms, in each 

case, appear to be in reasonable agreement, vindicating the use of the 

exponential-tailed inverse distribution. 

The line positions are assumed to be random. If this is the case, then 

the spacing between lines has a probability density given by 

P(5) «I exp  (-6/fi) (15) 
6 

where 6 is the average value for the spacing given by 

T-jZ (16) 

The   comparisons   of   this   theoretical   distribution  with   the   actual   histograms 

are shown in Fig.  6.    Again the agreement  seems   reasonable. 

In the band model, the line width is assumed to be a constant equal to 

the average value 6. The actual distributions of widths in the 3040 and 3060 

cm bands are plotted as histograms in Fig. 7. The dashed curve is a 

Gaussian distribution function with the same average and variance as the 

actual width distribution. It is obvious that the widths are not distributed 

normally. 

Finally, the absorption coefficient k(v), defined by Eq. (2), is plotted 

for our two  representative bands  in Fig.   8. 

C.       COMPUTER  GENERATED LINE  PARAMETERS 

Additional   tests   of   the   band   model   were   done   using   a   set   of   computer 

generated   line   parameters   instead   or   me   experimental   n^u   parameters   ODtained 

from the  line atlas. 

'.-_•                                   The    computer   generated    line   parameters   are    random   samples   drawn   from 

[••/.                         infinite   parent   populations   which  are   defined   by   their  probability  distribu- 

^                         tion  functions.     The   line   strength  population  is   defined   by  the  exponential- 
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Called Inverse distribution, the line wave number population is defined to 

have a uniform distribution, and the line widths are all set equal to a con- 

stant. 

By using these computer generated line parameters we refine our analysis 

of the band model error since we are now assured, as much as possible, that 

the line parameter distributions are in agreement with the theoretical assump- 

tions. In addition, we can study the effect of random fluctuations on the 

error by generating many sets of line parameters and calculating the error 

curve for each. 

A spectrum of 250 lines in the wave number range 0 to 50 cm were 

generated. The mean transmittances were computed for the 20 cm wide band 

extending from 15 to 35 cm . The wave numbers for the lines were computed 

using the simple formula 

50 (17) 

where the X^ are random numbers distributed uniformly in the interval 0 to 

1. This array of wave numbers was then rearranged so that they were in mono- 

tonically increasing order with respect to the index i. 

The line width was set equal to a constant value, 

0.075 (18) 

B 

This constant is approximately the same as the average line width in the two 

HoO bands considered previously (see Fig. 7). 

The procedure for generating line strengths is more involved. The 

relation between the random variable X which is uniformly distributed in the 

range 0 to 1, and the relative line strength distribution given by Eq. (13) is 

X - / G(o') da' - H(a) 
0 

(19) 
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Then inverting  this  equation and using o,  • S./S we  obtain 

S±  -  S H_1   (Xi) (20) 

where the X^ are random numbers, which are independent of the random numbers 

used to generate the wave numbers, and H is the inverse function of H. The 

functions H and H-1 must be computed numerically. The line strengths computed 

this way will have an exponential-tailed inverse distribution with an average 

value "§~. (Although 1> is   the   average   value   for   the   parent   population,    the 

average line strength of the finite random sample that we will compute will 

deviate  from this  value.) 

H 
•.' A   different    set    of    line   parameters   will   be   generated   each   time   this 

process is carried out, since different random numbers are used in each run. 

Repeating the calculation many times will generate an ensemble of line para- 

meter sets. (Each set is a random sample drawn from the same parent popula- 

tion.) Line by line and band model calculations were carried out using these 

computer generated line parameters. The results of a typical calculation are 

shown in Figs. 9 through 13. These calculations were then repeated 20 times, 

using different random sample line parameters in each calculation. The 20 

error curves are all plotted  on the  same  graph in Fig.   14. 

The error seems to be composed of two parts, a random fluctuating 

component and systematic component. The random component dominates at inter- 

mediate distances and shows no bias, i.e., it is just as likely positive or 

negative. The systematic component dominates at large distances and increases 

without limit as the distance increases. This just means that, in this limit, 

the band model always predicts larger transmittances than the line by line 

calculation. Such behavior is easily understood by examining the asymptotic 

behavior of the band model and line by line transmittances. The asymptotic 

form for the  band  transmittance,   obtained  from Eq.   (5),  is 

T(x)  *  exp[-2   (^ x)1/2] (21) 
e 
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The line by line band transmittance is given by Eq. (4). It is obvious 

that when x is very large only the values of k(v) in the vicinity of the 

minimum value \^n will contribute to the integral. The integral can be 

evaluated by the steepest descent method to obtain the asymptotic formula 

T.  (|l_)
1/2eXp(-kmin x) (22) 

where k" is the second derivative of k(v) evaluated at the minimum.  The 

asymptotic form of the error E is then derived from Eq. (10), 

E + 0.434 [k .  xl (23) 
L min  J 

The essentially linear increase at large distances is evident in all the error 

curves plotted in Fig. 14. 

The random component of the error will be discussed in Section III-C. 
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III.     NEW TRANSMITTANCE  APPROXIMATIONS 

The basic result of statistical band model theory is the formula, Eq. 

(5), for computing the mean band transmittance. This formula has three 

adjustable band model parameters, which are determined either by fitting to 

experimental data or by calculating directly from line parameter data using 

Eqs. (6) through (8). The failure of this method for moderate to long optical 

path distances has been demonstrated in the previous section. In this section 

we derive alternative parameterized formulas for computing T(x) which are 

accurate  for all values  of  the  optical path  length. 

Rewrite  the integral in Eq.   (4)  as a  simple  numerical  quadrature 

1       N 

T(x)  -4-1    exp[-k(v  )x]   6v (24) 
Av i-1 

where N is the number of quadrature points, 6v is the spacing between points, 

and Av is  the bandwidth.     Since  Av  = N5v,  this  can also be written 

1     N 

T(x)  -1    I    exp[-k(v.)  x] (25) 
N i«l i 

N must be large enough to ensure adequate accuracy. (For the calculations in 

the previous section we used N*1000.) The numerical ordering of the terms in 

the sum does not matter. Thus the array k(v.) of discrete k values can be 

rearranged in monotonically increasing order. The points were originally 

spaced 6v • Av/N units apart. The rearranged points are spaced dp = 1/N units 

apart in the unit interval 0 <_ p <_ 1. It is useful to regard these points as 

defining a monotonically increasing continuous function of p in this 

interval.       (One     could    define    this  function,   for example,   by  connecting  the 

The basic idea  of   reordering k values  is  quite  old.     Application of  the 
method and   references  to Its  previous  use are  given in Ref.   5. 

5A.  Arking and K.  Grossman,  J.  Atmos.   Sei.  29,  937   (1972). 
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points   with   straight   line   segments.)      We   call   this   function k(p)   the   "mono- 

tonic    absorption    function.' 

expressed in terms   of k(p) 

The    formula    for    the    transmittance    can    be 

T(x) 
1 

/   exp[-k(p)   x]   dp 
0 

(26) 

or,   in discrete form 

1 N 
T(x)   ==    I     exp(-k(p. )x] 

i=l 
(27) 

The function k(p) is shown for the 3040 and 3060 cm-1 bands of H20 in 

Fig. 15. These should be compared to Fig. 8 where the absorption coefficients 

are shown plotted as k(v) in their natural order. It is obvious that the 

k(v) functions cannot be approximated by any simple analytic function. The 

monotonic functions k(p) however may be amenable to simple analytic approxima- 

tions. Both of the graphs of k(p), shown in semi-log plots in Fig. 15, appear 

to be roughly linear. Therefore the first approximation we will try is just a 

simple  exponential  function 

k(p) - kQ exp(bp) (28) 

N 

A.        TWO-PARAMETER APPROXIMATION 

In the previous section it was shown that the long range behavior 

of T(x) is dominated by kffi^n. Since we want the long range behavior to be 

correct, we define kg • k^ • k(0). At the other extreme, the very short 

range behavior of T(x) is determined by the average value of k. This is 

easily proven. For very small values of x, the exponential in Eq. (26) can be 

replaced by the  first  two terms  of  its  power series  expansion,   thus 

T(x)   *   1 - <k> x (29) 

i 

< 
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where 

1 
<k> - / k(p) dp (30) 

0 

is the average value of k. 

The parameter b in Eq. (28) is chosen so that the average value of the 

exponential approximation is equal to <k>.  Thus, we obtain 

1 
<k> = kf exp(bp) dp (31) 

U 0 

or 

k0    b 

which can be solved numerically for b. Using these values for the parameters 

k.Q and b, the exponential approximation to k(p) is plotted as the dashed 

straight lines in Fig. 15. The approximate transmittance is then computed by 

substituting the function k(p) given by Eq. (28) into Eq. (26) and integrating 

the resulting expression.  The integral can be evaluated analytically. 

To accomplish this, the variable of integration in Eq. (26) is changed 

from p to k 

kl 
T(x) - t l   explkx] f(k) dk (33) 

0 

where the function f(k) is 

f(k) - ^- (34) 

and 

k{  - kQ exp(b) (35) 

[The meaning of the function f(k) will be discussed in more detail later.] 
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I 
1 • Equation (28) is easily inverted to obtain 

1 *    , p(k) - -g- ln(k/kQ) 

-; 
and therefore, using Eq. (34) 

. 

I - " . - T - 1 - ». ' 

(36) 

f(k) 
1_ 
bk 

(37) 

Substituting this expression into Eq. (33) gives 

T(x) --£• [Ex (kQ x) - Ej (k: x)J 

where Ej(x) is the exponential-integral function defined by 

oo -t 

El(x) " /  t dt 

x 

(38) 

(39) 

Very efficient methods are available for the numerical evaluation of the 

exponential integral function. The function, Eq. (38), has three parameters 

kg, kj, and b. However only two are independent. Using Eq. (35) we express b 

in terms of kg and kj obtaining our final two-parameter expression for T(x) 

TU) " tnCk^Q) tEl(kOx) - Vkl*)J 
(40) 

This function was evaluated numerically and the approximate mean 

transmittance curves are shown plotted in Figs. 16a and 17a along with the 

precise line by line results for comparison. Below these graphs in Figs. 16b 

and 17b are the error curves for the two-parameter approximation and also, for 

comparison, the error curves for the band model transmittances (see Figs. 2b 

and 3b). 

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 
Dover, New York (1965) 
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The range of integration in Eq. (26) for the variable of integration p is 

( 0 <_ p <_ 1.  For large values of the distance x, the contribution from the 

upper portion of this integration range is very small. In order to demon- 

strate this quantitatively, we have computed the upper limit of integration 

required to compute 90% of the value of T(x) for various fixed values of x. 

These upper integration limits are shown as tick marks in Fig. 15 and are 

labeled with the appropriate value of distance x in kilometers. We see that 

even for fairly small distances, the upper portion of the integration range 

does not make much contribution. This would suggest that any analytic fit to 

A k(p) should be weighted to have the least error in the lower part of the p 

range.  The present procedure for calculating the slope parameter b overempha- 

sizes the large k values»  From Fig. 15 we see that a better fit would be 

obtained in the lower portion of the k(p) curve if the slope parameter b were 

i less. 

A new procedure, which gives more weight to the lower k values, was tried 

for fitting the analytic function, Eq. (28), to k(p). The parameter kg is 

still defined to be the minimum, kg • k(0). However, instead of computing the 

average value of k as in Eq. (30), we now compute the average value of the 

natural log of k 

1 
< £n(k) > - / ta  lk(p)] dp (41) 

0 

The parameter b is determined by requiring that the average value of the 

natural log of the exponential approximation, Eq. (28), is equal to < *n(k) > 

1 
< jtn(k) > - f m   [k exp(bp)] dp (42) 

0 

This is easy to solve and we obtain 

b - 2 K*n(k)> - *n(k0)J (43) 

The new value for the parameter k, is then computed by substituting this value 

of b into Eq. (35) and the transmittance is computed using Eq. (40). 
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This new analytic approximation to k(p) is shown plotted as the dashed 

straight line in Fig. 18. The slope of the line has been reduced from that of 

Fig. 15 and a better fit to k(p) is obtained in the lower range of the 

curve. In Figs. 19 and 20, which show the transmittances and error curves for 

our two example bands, the error has been reduced from that shown in Figs. 16 

and 17. Thus, the second method for computing b, which gives more weight to 

the lower k values, is slightly superior. It has a very simple graphical 

interpretation in the semi-log plots shown in Fig. 18. The area under the 

straight line approximation is equal to the area under the line by line 

k(p). (Unless otherwise stated, in any future reference to the two-parameter 

method, the parameters are computed by the < £n(k) > method.) 

B. THREE-PARAMETER APPROXIMATION 

Any further significant improvement in accuracy can only be accomplished 

by increasing the flexibility of the analytic function used to approximate 

k(p). We have done this by dividing the integration range into two parts, 0 _<^ 

p <_ 1/2 and 1/2 <_P <_ 1, and approximating k(p) in each of these regions by an 

exponential function 

0 < p < 1/2 

k(p) 

kQ explb^J , 

(44) 

k1/2 explb2(p-l/2)j, 1/2 <  p < 1 

*• 

The function is required to be continuous which implies 

kl/2 = k0 exP(b!/2J 

The maximum value of this function is 

k 
"1 

k   exp[b /2] 

(45) 

(46) 

The inverse function to Eq. (44) is 

p(k) -< 

and therefore from Eq. (34) 

L-  £n(k/k0)  k0 < k < k1/2 

^- Än(k/k1)  k1/2 < k < kj 

(47) 
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kQ < k < k1/2 

kl/2  < k < kl 

(48) 

Note that f(k) is discontinuous at k * kj^- 

The minimum value of the analytic approximation is kQ. Just as in the 

previous cases, this is defined to be equal to the true minimum value \^n of 

k(p), 

kn "  k , - k(0) 
0   min 

(49) 

The parameters bi and bo are defined similarly to the previous case.  If we 

calculate the average values of £nlk(p)J in each half region 

1/2 
< *n(k) > - J   tn[k(p)] dp 

ü 
(50) 

< ttt(k) >2 - /   *n[k(p)] dp 
1/2 

(51) 

and equate these to the values obtained when the analytic approximation, Eq. 

(44), is substituted for k(p) in Eqs. (50) and (51), 

and 

bl  « 4 12 <*n(k) >: - tn(k0)] 

b2 - 412 < *n(k) >2 - Hn(k1/2)] 

(52) 

(53) 

T« 

;« 

The value of k,/2 in Eq. (53) is computed using Eq. (45). With all the para- 

meters defined, the analytic approximation, Eq. (44), is evaluated and plotted 

in Fig. 21. This should be compared with the previous two-parameter approxi- 

mation in Fig. 18. 
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The transmittance is obtained by substituting the expression for f(k) 

1 given by Eq. (A8) into Eq. (33) and evaluating the integrals.  The result is 

»•-_ "_• 

l * • 
T(x) «i- [E^kQ x) - Ex(k1/2 x)] +1- lE1(k1/2 x) - E^ x) ]      (54) 

Using Eqs. (45) and (46) we can express bj and b2 in terms of kQ, k^^. and 

k,.  The final form for our three-parameter formula is 

T(X) " 2 £n(k|/2/k0) 
lEl(k0 X) " El(kl/2 X)J 

[E,(k1/0 x) - E,(k, x)] (55) 
2 Än(k1/k1/2) 

l r   1/2 ' lv"l 

Transmittances computed using this approximation are shown plotted in 

Figs. 22 and 23 along with the error curves. As can be seen, this three- 

parameter approximation is excellent over the entire range of distances. 

In the discussion presented so far, the two-parameter and three-parameter 

approximations have been presented as approximations to line by line calcula- 

tions. Obviously, they can also be used as a convenient fit to experimental 

transmittance data. 

C.   k-DISTRIBUTION FUNCTION 

The function f(k) is defined by Eq. (34).  In differential form it is 

dp - f(k) dk (56) 

Integrating this expression gives 

Ap = P2 - P1 - /k
2 f(k) dk (57) 

i 
The quantity Ap is the fraction of the spectral interval for which k is in the 

range kj _< k <_  k£.  If k is considered to be a random variable, then f(k) is 

•".' the probability density distribution of k and Ap is the probability that a 
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>" -s. 
randomly chosen k will be in the interval k, < k < k9.  For this reason the 

~~   5 
f function f(k) has been called by Arking and Grossman  the k-distribution 

function. 

Given the k-distribution function f(k), the mean transmittance is given 

by Eq. (33).  In this expression the lower and upper integration limits have 

• been expressed as the finite values k^ and k,. This is in conformity with our 

expectations for real spectra where \LQ > 0 and ki < ». It will be useful now 

to extend these values to their ultimate limits and write 

I T(x) - /  explk x] f(k) dk (58) 
.; 0 

[This more general formula is true even for real spectra, since we only need 

to define f(k) • 0 outside the range kQ <_k_<k^.] 

Domoto  recognized  that  this  relation defines T(x) as  the Laplace 

transform of f(k) and, conversely, f(k) is the inverse Laplace transform  of 

•'        T(x).    He applied this procedure to the statistical band model where T(x) 

— is given by Eq. (5).  The inverse transform he obtained is 

v _ 3 1/2 

I f(W -|  [f(|) ]   «xp[«(2-|-|)] (59) 

i _ 
where a * v/6 •  This distribution is defined on the entire interval 0 < k 

e — 
< 00. 

The k-di8tribution8 f(k) for the two and three parameter models are given 

• by Eqs. (37) and (48), respectively. The exact k-distribution can be computed 

numerically from a line by line calculation. These functions are plotted in 

Figs. 24 and 25. Figure 24 compares a band model, line by line and the two- 

parameter model.   Figure 25 is the same, but plots f(k) for the three- 

£        parameter model instead of the two-parameter model.  Note that the three- 

parameter f(k) is discontinuous. 

f 

7G. Domoto, J. Quant. Spectrosc. Radlat. Transfer 14, 935 (1974). 
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Fig.   25.     k-Distribution Functions.     Same as  Fig.   24  except  that   the 
solid  line  is  the  three-parameter model. 
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The cumulative distribution function is obtained by integrating the 

A probability density function 

• k 
p - /    f(k') dk' - F(k) (60) 

min 

L-\ 
The inverse of this cumulative probability function is the function we have 

previously defined as the "monotonic absorption function" k(p).  Thus 

k(p) = F_1(p) (61) 

This procedure provides a means of computing the monotonic absorption function 

k(p) for the statistical band model. Both steps of the procedure must be done 

numerically: first a numerical integration of f(k) to obtain F(k) and then a 

numerical interpolation to obtain F~ (p). The results are plotted in Fig. 26. 

The exact results are also plotted for comparison. This graph should be com- 

pared with Figs. 15, 18, and 21, where k(p) for the two- and three-parameter 

models are plotted. 

The functions T(x) and k(p) are transforms of each other. One can be 

computed from the other. The function k(p) is calculated from T(x) by the 

procedure just outlined and T(x) is calculated from k(p) by Eq. (26). The 

behavior of T(x) for large values of x is determined, for the most part, by 

the values of k(p) in the interval near p • 0. This is illustrated in Fig. 15 

where the upper limit of integration used in Eq. (26) to calculate 90% of the 

final value of T(x) is plotted for various values of x. In the limit as 

x •*• oo, T(x) is determined by the single point at p • 0, k(0) - ^in lsee Ecl' 

(22)J. Thus, in order to compute T(x) accurately for large optical path 

lengths, it is necessary to have an accurate approximation of the function 

k(p) at and near p • 0. 

Q 

S. L. Meyer, Data Analysis for Scientists and Engineers, Wiley, New York 
(1975) p. 20, 103. 
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Fig. 26. Monotonie Absorption Function k(p). Comparison of line by 
line and band model. Compare this also with Figs. 15, 18, 
and 21. 
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The two- and three-parameter approximations we have proposed take advan- 

tage of the relatively simple form of the function k(p) by approximating 

ln[k(p)] by one or two straight line segments. These approximations are 

constrained to be equal to kffiln at p - 0. This ensures that our approximation 

will have  the correct  long range behavior. 

The   statistical   band   model,   on   the   other  hand,   is   basically   limited   in 

accuracy   for  large   values   of  x  because   the  information  contained  in  the  band 

model    parameters k,  y, and 6    is    not    sufficient    to   determine   k  .   .       More 

generally  it  is   not   sufficient   to determine k(p)  in  the  interval   near p • 0. 

The best  that  can be done with this  information is  to determine a distribution 

of k  (p)  functions   which  are   compatible  with   the  parameters.      (The   subscript 

a  labels  the functions in this distribution.)    The  functions    k  (p)  determine 
o 

a   family   of   mean   transmittance   functions T (x).     These   in   turn   determine   a 
a 

family   of   error   curves E  (x), which   will   look   very   much   like   the   family   of 

error curves  shown in Fig.   14. 

If the only information we are given about a band is the statistical band 

model parameters, then each of the error curves E (x) is equally probable. 

The error curve that applies in any particular case can be thought of as just 

a  random selection from this  family  of  curves. 

Before leaving this section, it is interesting to examine the functions 

k(p) plotted in Fig. 26 in more detail. For convenience, the band model func- 

tion will be written kß(p) and the line by line function will be written as 

kj(p).     The  general   behavior  of  k_(p)   is   that  it  turns  sharply  downward  near 

p -   0   and   approaches   the   value  k_(0)   •   0,   which   is  always   less   than k  . 

k,(0).   This   is   a  manifestation   of   the  incorrect   asymptotic  form   of   the   bai 

model  transmittance  function given by Eq.   (21). 

The  family  of  error  curves  shown in Fig.   15  is  not  exactly  the  same as  those 
described here.     In Fig.   15  the parent  populations were  fixed,  whereas  in the 
case decribed  here  the  band model  parameters k, Y,   and 6e  are held  constant. 
After the  calculations  for this   report  were  complete,  we discovered a  simple 
method  to generate  line parameters  that have  fixed  band model parameters. 
However,  we  believe  that  the  family  of error curves  shown in Fig.   15  is  at 
least a  good qualitative and also a  semiquantitative  picture  of the  behavior 
that would   result  when the  band model  parameters  are held  fixed. 
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In the region 0 _< p _< p2 where p2 ~ 0.5, the relationship between kg(p) 

and kL(p) will generally be one of two types. Either k^(p) < kL(p) as in tne 

lower graph of Fig. 26 or k„(p) and kL(p) will intersect at some small value 

Pj with kg(p) > kL(p) in the region pj _< p _< p2 as in the upper graph of Fig. 

26.     For  the  first   case,  we   can predict   from Eq.   (26)   that TD(x)  >    TT (x)  and 
D L 

thus the error ratio will be greater than 1. This behavior is illustrated in 

Fig.   3b. 

In the second case, the behavior is more complicated. For moderate 

values of x the result will be T (x) < T~T(x). However, as x increases, the 

effective range of integration in Eq. (26) decreases. At some point it will 

fall entirely within the interval 0 _< p _< pj where kR(p) < kL(p). When this 

occurs we  obtain T_(x)  > TT(x).     Thus  the  functions TT(x)  and TD(x)  eventually B L LB 
cross and the error ratio varies from less than 1 to greater than 1. The 

beginning of this behavior is illustrated in Fig. 2b which presumably would 

follow the scenario just outlined if x were extended beyond 100 km. The error 

curves  shown in Fig.   14  illustrate  both types  of behavior. 

D.       MONTE  CARLO  METHOD 

The term "Monte Carlo" usually refers to a computational procedure in 

which a large (or infinite) distribution of values of some quantity or 

parameter is replaced by a manageably small, unbiased random sample of the 

distribution. For example, a physical quantity may be the average value of 

some distribution. The Monte Carlo approximation is computed by generating a 

random sample of the distribution and then averaging the random sample. In 

the present case, the Monte Carlo method is a practical procedure for calcu- 

lating the parameters for the two- and three-parameter approximations from an 

unbiased  random sample  of  the k-distribution. 

The k-di8tributton is the continuously infinite collection (or 

population) of k values that are defined by the function k(v) in the band 

interval Av without regard to their order. An unbiased random sample of this 

infinite  population of k values  can be  generated  by  randomly selecting M wave 

50 

l-v -** -'* -"•* -"• -"•-"*-*• ^'» -«-'*-*» m'« — «—*—'-'-,'  -r      r    ' T * r I*- T '  T  n r , , *  *   >      • '   •  * -  *  "   -  -  ' - m »„—. » • M . »     *.*_»*-.      . i. 



"• f 

i 

numbers v. (i * 1, M) from the band interval and then calculating k(v,) using 

Eq. (2). The random wave numbers are computed from random numbers X. in the 

interval 0 to 1 by the formula 

vi " (vU " V Xi* ± "  l*  M (62) 

where vM and vT are the upper and lower boundaries of the band. 

The least value of k in this random sample is a good approximation to 

^min anc* *s set eclual to c^e parameter kg for both the two- and three- 

parameter approximations. 

The average value of £n(k) for the M values of k in the random sample is 

the Monte Carlo approximation to the quantity <£n(k)> defined by Eq. (41). 

The parameter kj for the two-parameter approximation is then calculated by 

combining Eqs. (35) and (43) to obtain 

k. -i- expl2 <*n(k)>] (63) 
1    KQ 

For the three-parameter model we must compute Monte Carlo approximations 

for the quantities <£n(k)> and <£n(k)> defined by Eqs. (50) and (51), 

respectively. The quantity k(p*l/2) is the median value of k which we 

designate ^g^« This is the value of k such that half the elements of the 

distribution exceed it in value and half are less in value. The 

quantity <jj,n(k)> is the average value on £n(k) for k < k^j and <£n(k)> is 

the average value of £n(k) for k > k^eH* Thus in the Monte Carlo 

approximation we divide the random sample of M elements into two groups, each 

with M/2 elements such that any k value in the first group is less than any k 

value in the second group. (In order to avoid any ambiguities in this 

procedure, we always choose M to be an even integer.) The average value 

of fcn(k) in the first group is an approximation to <£n(k)> and the average 

value of £n(k) in the second group approximates <£n(k)>„. The parameters k,^ 

and ki for the three-parameter model are then computed by combining Eqs. (45), 

(46), (52), and (53) to obtain 

k1/2 «•£- expl4<An(k)>1J (64) 
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and 

j k. --J-exp[4<Än(k»9J (65) 
1  Kl/2 Z 

In Figs. 27 and 28 we show the results obtained by this method using the 

three-parameter approximation and a random sample of M * 50 values of k. 

These results are almost as good as the results obtained previously using 1000 

points but required about 1/20 the computational effort. The Monte Carlo 

procedure is thus an efficient method for carrying out (approximate) line by 

line calculations. 
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IV.     SUMMARY AND  DISCUSSION 

In this report, we have investigated the reliability of the statistical 

band model by comparing the model with precise line by line calculations and 

we have also derived  two new nonstatistlcal  band model approximations. 

The first part of the study, which is an evaluation of the statistical 

band model, is contained mainly in Section II with some additional discussion 

in III-C. The study was carried out on a system of R^O absorbers in the wave 

number range 2800 to 3400 cm . Tests were also made using sets of computer 

generated line parameters. The results of these calculations were presented 

graphically. 

Figures 5 and 6 show that the distribution of H-O line strengths and line 

spadngs are in reasonable agreement with the theoretical assumptions made in 

the statistical band model. The line by line and band model transmittances 

are compared in Figs. 1, 2, 3, 13, and 14. It is concluded from these (and 

others not presented here) that the statistical band model is fairly reliable 

in the short optical path length regime in which T(x) > 0.1, but for long 

paths where T(x) < 0.1, the transmittances can be in serious error by orders 

of magnitude. This error has a random component that dominates at intermedi- 

ate distances and a systematic component that dominates at very long dis- 

tances. 

The random error arises because the information contained in the band 

model parameters is not sufficient to define a unique k-distribution, but 

rather is compatible with an entire ensemble of k-distributions from which one 

has  been  randomly selected. 

The systematic error arises because of certain simplifying assumptions 

made in the derivation of the band model traremittance. All values of the 

strength parameter and all values of line spacing from 0 to * were allowed. 

As a result, the k-distribution extends from 0 to » whereas any real distribu- 

tion has finite limits, kfflin > 0 and kmax < «°. The unphysical k values In the 

range 0    to k^j, result  in an erroneous  asymptotic  behavior for the  band  model 
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transmittance that is consistently too large. This systematic component of 

the error is easily computed from the asymptotic formulas and is given in Eq. 

(23). 

The second part of this report is concerned with the derivation and 

testing of two new nonstatistical band model approximations. They are 

referred to simply as the two-parameter and three-parameter approximations. 

The formulas for these two approximations are given by Eqs. (40) and (55). 

They are compared with the exact results and with the statistical band model 

in Figs. 19, 20, 22, and 23. We conclude that the two-parameter model is 

sometimes slightly inferior to the statistical band model for short optical 

paths but is always much superior for long paths. The three-parameter model 

is uniformly excellent  for all  path lengths. 

The present study was a preliminary investigation and was limited in its 

scope. A more complete study should repeat most of the calculations in this 

report over a broader range of conditions including much higher and lower 

temperatures and pressures, for other portions of the H2O line system, and for 

several other molecules, especially COo» Also other line profiles should be 

studied. 

Several other topics that could be included in a new study would be a 

study of the temperature and pressure dependence of the model parameters KQ, 

ki/2» and k,; a generalization of our new approximations to systems with non- 

uniform temperatures and pressures; and the development of practical numerical 

techniques for fitting both the two- and three-parameter formulas to experi- 

mental   transmittance  data. 
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